w个

List the factors of the following numbers:

1. 28

2. 64

Rational Root Theorem

SOLVING WITHOUT A GRAPHING CALCULATOR

- 1. Call the Constant at the end of the expression "p"
 - List all the factors of *p*
- 2. Call the Leading Coefficient "q"
 - List all the factors of *q*
- 3. Make a list of all of the possible $\pm \frac{p}{q}$ values
 - These are all of the potential rational roots that your function will have
- 4. Test the roots using the remainder theorem, or by using synthetic division
- 5. Repeat as necessary

Example

$$f(x) = 2x^4 - 3x^3 - 21x^2 - 2x + 24$$

Example

$$f(x) = 54x^3 - 141x^2 + 11x + 10$$

1. $f(x) = x^4 - 3x^2 + 2$ 3. $f(x) = x^3 + 6x^2 - 13x - 6$ 5. $f(x) = x^3 - 9x^2 + 27x - 27$ 7. $f(x) = 2x^3 + 3x^2 + 5x + 2$ 9. $f(x) = 2x^3 + x^2 - 1$

<u>To-Do</u>

- 1. List all the possible rational roots ($\pm \frac{p}{q}$ values)
- 2. Algebraically find the x-intercepts and classify them (show all work)
- 3. Find y-intercept
- 4. List end behavior
- 5. Make a sketch of the graph

2.
$$f(x) = 4x^3 - 8x^2 + x + 3$$

4. $f(x) = 36x^4 - 13x^2 + 1$
6. $f(x) = x^4 - 3x^3 - 11x^2 + 3x + 10$
8. $f(x) = 2x^3 - 7x^2 + 4x + 3$
10. $f(x) = x^3 - x^2 - 8x + 12$